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AI?PROX124M!ETEEORY lK)RCALCULATION OF IJ3?l!

OF BODIES, AFIXRBODIES, AND COMBINNITONS OF E!OD131S

An expression is developed for the lift of a slender afterbody in
terms of the “slender-body”approximate ptential at the after end in
conjunction with a suitably calculated value of the ptential at the
forward end. The failure of the usual “slender-body”theory to predict
any lift on a slender cylindrical afterbody is thereby corrected. The
same expression is used to compute the part of the interference lMt
generated by the presence of a neighboring body, due to the interference
upwash. Another expression is developed to compute the remainder of
the interference lift, due to an interference pressure gradient. The
lift is determined for a cone-cylinderbody, a cylindrical afterbody
of a slender wing-body combination, and three combinations’of bodies
to illustrate the method.

IIWRODUCTION

In the search for better aerodynamic configurations for supersonic
flight, the missile shape has become nmre complex. One of the problems
arising is the effect of interference between tidies which occurs, fo~-
example, when the propulsive unit is mounted external to the fuselage.
An adaptation of slender-body theory for obtaining a simple a~roxLma-
tion of the interference lift between such bodies was developed at
the NflCALewis laboratxmy and is presented in this reprt. This approxi-
mate theory is also applied for the calculation of the lift of an afterbody,
which is herein defined as the wrtion of the body behind the wing trailing
edge for a wing-body cotiination or as the mrtion of the body aft of the
nose section for a wingless body.

Sknder-body theory as originally develo~d by Mu@ in studying
the lift of airships (reference 1) has proved useful in predicting the
lift of low-aspect-ratiowings, slender bodies, and slender ~dng-body
combinations at supersonic speeds (references 2, 3, and 4). However,
slender-body theory yields the unreaMstic result that a cylindrical
afterbody of a wing-body combination and a cylindrical afterhody of
a body carry no lift.

Although slender-body theory may be grossly in error on the lift
of a slender afterbody, the theory closely approximates the correct
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2 NACA TN 2669

value of’the part of the surface ~tential at the rear of the af%er%ody
ProPtii~ti h We angle of attack. An expression utildzing this fact
is developed herein for the afterbody lift in terms of the slender-body
~tential at the after end in conjunction with a suitably calculated
value of the ptential at the forward end. The more accurate methods of
calculation of geater labor (for exsmple, Mnearized theory) are thereby
limitedto the forwardor nonslender ~rtionof the body.

The same expression is used to compute the part of the interference
lift of bodies of revolution due to the upwash field generatedby each
body on the other. Another interference effect considered herein is
that due to the variable pressure field generatedby one body in the
vicinity of the other, which results in a buoyant force.

As examples of the method, the lift of a cone-cylinderbody, the
lift of a cylindrical afterbody of a slender wing-body combination,
and the lift of three conibhations of bodies are determined.

ANALYSIS

Basic Equations

Consider a slender body of revolution at zero angle of attack in
a unifo?m supersonic stream of velocity U. There will be a certain
disturbance velocity field andan associated velocity potential produced
by the body. Because of symmetry, this velocity field will give rise
to no lift.

Now let the bodybe given a small angle o: attack u andbe aibject,
in addition, to a small disturbance field ~,v,~ generatedby a second
body (fig. 1). (The synibolsused herein aredefined inappenMx A.)
The first body wilJ-develop an addi~ional vQocity ptential due to a
and to the disturbance field. If v and w are suitably restricted
it is shown in appendix B that to a certain acc~cy (a} only that part
of this additional potential due to a and to w will give rise to
lift, and (b) cross product terms involving both ptentials may be
neglected for the lift. Call this lift-producing incremental @tential Q.

Equations of motion and boundary contition. - The incremental
potential q is presumed to satisfy the governing equation for small-
disturbance, isentropic irrotational flow

(1)

In addition, q is specified to satisfy the boundary condition that the
cross flow, Uu + w, must be canceled at the surface of the body~ that is,
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(%)=R =- (Ua+;)sine (2)

on the body. This Ixmndary condition is linearized, not exact.

Pressure coefficient. - That part 5P of the entire pressure
increment Ap which contributes to the lift is, to the present accuracy,
givenby the linearized Bernoulli equation

Q= -2(Qx+q

q u
(3)

Specifically, the accuracy is such that all terns of order a dR/dx or
(dR/dx)2jbut no higher, which can contribute to the lift will be
indudedj this result is proved in appendix B.

Lift. - The sxis of the slender body under considerationwill
alway~ taken parallel to the x-axis. For simplicity the sidewash ;
and ; generated by the interfering body are considered to vary only
with the coordinate x in the general vicinity of the primary body~
this restriction is the one mentioned earlier. (The sidewash will not
be considered further because it contributes
(see appendix B)). The approximation should
are not too close to each other.

The lift of the body maybe obtainedby
of the pressure in the lift direction around
expression for the lift is

X.y 2YC

notlhg to the lift
be valid if the bodies

integrating the component
and along the body. The

211 x.

xl

where R is the

at the start and

Substituting

2YC

G

H’ 5pstieRdeti= J’ J’
G

Lift = - q -q SiIl e df3 5P &R—

Oq 0
q

x-l

radius of the body and xl and x2 are the x-coordinates

base of the body, respectively.

equation (3) into equation (4) gives

-o -xl xl o

\ L ,+ L B
v

The second integral in equation (5) represents the lift of a tidy
immersed in a variable pressure field and may be considered as a buoyant
force. The integral till be discussed in detail in the section on
interferencebetween bodies in combination.

.- ——



4 NACA TN 2669

Development based on first integgal in Mft equation. - This
section is concerned with the transformation of the first integral in
equation (5) into a more useful form involving the surface Wtential.
Hereinaft&- this first integral will be called L.

Ibr mnstant e, the quantity Ru dx may be written

Insertion of equation (6) into the first integral of equation

The equation for the upwash perturbation velocity is

W=$)rsine+; Q(JCos e (8)

6tibstitutionof the value of Qr sin f3 from this equation into equa-
tion (7) results, u~n simplification, in the following equation for L:

2?(

J

X2 2X
2q

L’~ (Rz92 - RI%) Sin e de - ~

!

Rm
#x

ir
wale+

o X1 o

L

which reduces to

because the inte@’al in the last term is zero. The first integral in
equation (9) may be integmted directly because, as shown in appendix B,
the ptential is of the fomn
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Equation (9) then becomes

x. 2YC

~s eqmtiOn is fundamental for subsequent

5

{10)

o

devel.opts.

ptential at the forward and

the body under consideration,
w of the body perturbation

If 91 and Q2, the values of surface

after ends, respectively, of the section of
are known as well as the vertical mmponent
velocity, the M% may be obtained from equation {10}. In the following
sections, procedures are developed for deterndninn the lift for cases
in which the integrationof the second temnti equation (10) is negM.gi-
ble or zero. [When the second ten is not zero, it is probably simpler
to obtain the lift from equation (5} because the ssm.etype of computation
is required to detemine the w-distribution as is needed to determine the
u-distribution.) For these cases, 92 is assumed to be the potential given

by slender-body theory.
. . -—-—

Slender-body theory for variable cross flow. - The central approxi-
mation of slender-body theory is the following: In any plane x = con-
stant, the value of the ptential increment q associated with the
cross flow is the two-dimensional ptential of a cylinder having the
local radius andmmingwith the local cross-stream velocity. For
supersonic flow with uniform cross flow (that is, a fixed angle of
attack and no variable interference upwash], this result is derived in
reference 3 by taking the limit of the linearized value for radius
approaching zero. The mrresponding result will nowbe derived in
simik fashion for the more general case of variable cross flow.

The wtential in integxal fo?m~ybe witten

X-pr
sin e

l#.— J’ g(~)(x - ~)d~
r

o ~(x-Q2- @’r2

(u)

The expression maybe interpreted as the ptential of a Mstribution

of doublets of strength
t

g(x)dx per unit length [g(x) =81$(X) of

appendix B).

When the distribution function for the limiting case R+ O is
related.to the local cross flow as in reference 3, there results

——. ——— -. ——— ——–––~- .—— -——..———.
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Inserting this value of g(x) into eq.zation(lJ_)for the Wtential,
appl@ng the slender-body appro~tion (radius approaches zero), and

On the body (r = R), equation (X5) reduces to

Equations (X5] and (14) represent tQe slender-body
the case of a variable Crossfiflow w(x).

Demonstration that
i“

Vale= O for slender

o

apprmdmation

body section.

(13}

(14)

for

The lift equation (10] is particularly simple when the second term
reduces to zero. !&is re&ction occ& wh& eith;; R = constant (the

section under considerationis cyMndrical) or
!

wde=o. It will

23’C o

now be shown that
r

w de = O is obtained when the afterhody i.ssuf-

0
ficiently slender that slender-body theory may be applied.

The upwash may be obtained by inserting equation (13) into equa-
tion (8) and performing the indicated tifferentiation. The result is

[
w= m+

or on the body (r = R),

w= [Ua +

which immediately leads to

;(xjJ R2/r2(c0s2e - sti2e) (15)

;(x)] (c0f32e - 8ti2e) (16)

the result
21’C

r
Wde=o

o

wherever slender-body theory is applicable.
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Applications

Slender minted body of revolution. - If, in addition to being
slender everywhere, the body of revolution tapers to a pint at the

2fl

forward end, then
r

wde=O and Q1 = O. ‘I!husthe lift equa-

0
tion (10) reduces to

‘ 2YtqR#P2
L =

U sin 0
(17]

With the slender-body VaMe for Q2 (equation (14)), the final result is

(18)

where A2 is the area of the base of the body. Thus the lift of a

pinted slender body in an upwash field depends on only the upwash and
the cross-sectionalarea at the base.

Open-nose bodies snd cylindrical afterlxxliesof bodies. - For a
circular cylinder (dR/dx = O), the I-ift from equation (10) becomes

L=2qY’m Q2 -’m
u sin e

(19)

If the ptential at the base of ~he cylinder is given by the slender-
body value (equation {14) with w = O}, the lift is the same as that of
a slender-@nted body with the same base area because ~ is zero.

Indication of the extent to which use of the slender-body value is
justified maybe obtained from reference 5 where an exact solution of
the linearized Mfferential equation (equation (1]) bas been obtiined
using operational methods for the flow past finite bodies. ward’s
results for the lift of a cylinder of length 20 indicate that the

slender-body lift is realized within 2 percent for 20/PR> 8.

The lift of a cylindrical afterbody of a body is given by eq~-
tion (19) where Q1 is the ~tential on the body at the start of the

aftersection. me lift of the afterbody would be zero if Q1 and

V2 were lmth taken to be the slender-body values because Q1 would

then equal Q2. To obtain a more accurate value for the lift of the

afterbodyj Q1 should be obtained by more exact methods, such as the

_-. —_.-. .. . . . -——. —-————- .— ————————— ..-.. ————
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stepwise procedure of reference 3. In the EXAMPLES section, the lift
of a cone-cyllndermodel is computed as a function of the cone angle by
this procedure.

If in the ticinity of the lip the body is assumed to be qwsi-
cylindrical (dR/dx s O), the second term in equation (10) will be
approximately zeroj if the bog is slender, the term will still be zero

/in

farther downstream because r wd6=0 as

out in reference 6 that the discontinuity at
body affects only the region directly behind
order of the diameter of the body. The flow

shown. Lighthill points

the lip of an open-nose
it for a distance of the
then behaves as if the

open-nose body were a pinted bo& with a continuous slope. By use
of operational methods, reference 6 shows that the lift of an open-nose
body of sufficiently large fineness ratio is given by the slender-body
value.

Afterbodies of wing-body conibinations.- The analysis used for a
body of revolution may be considered to apply equally well to a wing-
body combination provided the ptential- q is no longer restricted
to the form sin 13G(x,r]. Consequently all the earlier formulas not
depending on this restriction still apply. In particular, equation (9)
must now be used in place of equation (10). The lift of the prtion
of the body behind the wing trailing edge of a wing-body combination
may be determined from equation (9) with Q1 eq~ ~ the Ptential

on the body at the wing trailing edge. In order to satisfy the basic
assumption of constant interference downwash and sidewash in each
transverse plane around the body (due in this case to the wing and its
wake), the diameter of the afterbody should be sma~ compred with the
wing span. Reference 7 gives the complex stream potential for a slender
body of revolution with small-aspect-ratiotriangular wings mounted on
the cylindrical part of the body. The velocity potential is obtained
by evaluating the complex stream ptential on the body since the stream
function is zero on the body. The result is

Q,=.. [j--R].] (20)

where b is the maximum semispn of the wing and R is the radius of
the cylindrical part of the body. The slender-body approximation to
the surface potential at the base of the afterbody is (equation (14))

—— —.— —.-——
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2 is the induced upwash velocity generated by the wing. Thesewhere ;

values of Q1 and Q2 may now be substituted into the first term of

equation (9) for the lift. The second term in equation (9) is zero
2X

J

-.,
‘because w d8 vanishes as a consequence of the slenderness. me

o
result for the lift of an afterbody of a slender wing-body combination
is found to be

[ $+:)-z’l(b-$)-z(b+$s(zl~L=2q~ Al+%

The lift of a cylindrical afterbdy for the 13miting case where
the vortex sheet is displaced.sufficiently far from the afterboiy
that the downwash induced by the wing at the base of the afterbody is
negligible &2/W - 0) is compered in figure 2 with the lift of a
slender wing-body cotiinatlonwith no afterbaly. ‘I!heassumption of
small R/b is violated in the region where the radius of the body
approaches the semispan. However, the 13ft of the afterbdy approaches
zero in this region and since the l~t given by equation (21) also goes
to zero, equation (21) may be considered a good approximation to the
lift over the complete range. The lift of the wing-body combination
is obtained from reference 4 and is presented as the ratio of the lift
of the combination to the lift of a pointed low-aspect-ratiowing. The
ltit of the wing is

CLW.2a. & (22}

Combinations of bodies. - Because the linearized differential
equation of motion is assumed to apply, the solution for a cotiination
of bodies is a linear superposition of the solutions for the bodies
alone and for the interference effects between the bodies. The boundary
condition to be satisfied is that the normal velocity at the surface
of the bodies is zero.

In order to determine the interference lift for the bodies in
combination it is necessary to know the &lsturbance one body produces
on the other. In particular, the upwash and pressure field of one
body contribute to the lift of the other body. me titerference ~es-
sure field can be computed from the interference upwash field by
integration of the irrotationaMty condition

to determine =j the pressure is obtained from equation (3).

— ———— ——-. — —— — —.
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Co~putation of interference upwash

Several methods maybe used to calculate the upwa$h field generated
by a body at zero angle of attack and at angles of attack. For a
body at zero angle of attack the Wthod of reference 8 may be applied
to dEtezmine the upwash. The velocity @ential for the supersonic
flow about a body at zero angle of attack is given by

where f(x) is the
integral expression

x-~r

x=-
!

f(g)~

o~

(23)

local strength of the source Mstribution. The
for the upwash is

A first apprcndmation for the source strength of a slender body is

f(x) =UR

Equation (24], with the source strength
inte~ted directly for a given body.

An analogous proce~ may also be
~ttackj that is, the slender-body value
w = 0) for a given %ody is mibstituted
the ufish

-t-

(m

ax

(24)

(=) !

given by equation (25), can be

applied for nonzero angle of
of g(x) (equation (12) with
into the integral expression for

(26)

and the inte~tion is perfmmed without letting the ratius awroach
zero as before. The result is thus dependent on Mach number, whereas
the u~sh computed by the slender-body approximation (equation (X5)
with w = 0) is not.

A more accurate evaluation of the distribution functions f(x]
and g(x) is reqtied for bodies not necessarily slender. Tor such
bodies a method is presented M references 3 and 9 for evaluating the
upwqsh by a stepwise procedure, and the stepwise proced~ is extended
to open-nose bodies in reference 10. For a parabolic body, a comparison .
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is presented in the EXAMPLES section of the incremental upwash due to
angle of attack as computed by slender-tidy theory (equation (15) with
; = 0), by the more accurate stepwise procedure of reference 3, andby
the intermediate procedure of using the slender-body approximation for
g(x) in the inte~l expression for the upwash.

Lift due to interference upwash

The calculation of the pm-tion~f the lift on a slender
body due to the lmown upwash field w from another body is similar to
the afterlm~>blemin that the upwash varies along the tidy. The
lift due to w is obtained in the same manner except that ~ = O.

The upwash’in each transverse plane is assumed mnstant and equal to
its value at the center line. The lift is then @ven by equation (10)
with

G
u~-&2sineQ~ = ~a

and 23C

J’
wde=O

o

according to slender-body theory. The lift is thus

The same result is obtained for an open-nose Mdy in a varying upwash
field if the body is quasi-cylindrical {dR/dx - 0) near the lip.

The internal lift for an open-nose body of length substantially
greater than ~ times the Uameter with supersonic flow at the inlet
is found from momentum consideration to be

L = 2aqAl

provided there are no internal losses and the flow is discharged at
the free-stream static Tressure. Generally this will not be the case
and terms must be ficluded to correct for the internal axial forces.
The lift acts essentially at the nose and the internal Mft for an
open-nose body in a varying upwash field is obtained simply by re@acing
the angle of attack by the ratio of the upwash to tree-stream velocity
at the nose. Thus the internal lift is

—-...—.—_ _____ ___ —————— –.—— -—..—- . _______
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(28)

In this analysis it is assmed that the portion of the lift of a
body that results from the upwash generated by a second body due to
the presence of the first body is negligiblej in other words, only the
primary interference effects are considered. In the section EiAMPMIS
the secondary interference effects are examined for a
combination.

Buoyant lift due to interference

The buoyant prtion of the lift of a body due to
pressure field from another body is obtafied from the

cylinder-cylinder

the variable
second integral B

of equation (5). _d@3 tk x-perturbation velocity Z of the
pressure field in a Taylor’s series about the horizontal plane through
the center line of the body in question yields

. .

where Z. is the

terms in equation
the lift, because

z-coordinate of the center Mne of the body. The
(29) involving even derivatives do not contribute to
they are symmetric about the z = ZO plane. If it

is assumed that

(Z - ZO)3a%() (-)+z-zo)z
3! s az

>20 2=20

then that ~ of the fi-velocity which contributes to the lift is
approximately

()&i
z+z-zo) —

az (?7‘Rsine%=z
2=20 o

~ = ~, the previousWith the aid of the irrotationality condition
expression becomes

.

— ——- .—
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Inserting the value of ~ into the expression for the buoyant lift
(term B in equation (5)) and integrating with respect to 13 yield,-..
with W = W(xj,

If the body is a cylinder or a quasi cylinder,
to the pressure field is

or

(3x (30}

the buoyant force due

(31a)

(31b]

where ~ is the mean cross-sectionalarea.

Equations (30) and (31) were obtained by expanding ~ in a
Taylor1s series~ hence they are not valid in regions where a discon-
tinuity in the u-velocity is present such as occurs, for example, at
the intersection of the Mp shock from an open-nose body with another
body. The buoyant force, however, may be determined by applying equa-
tion (30) or (31), as the case may be, a suitable distance behind the
intersection then the buoyant force on the excluded area, associated
with the shock, is evaluated separately aud added thereto. The buoyant
force associated wtth the shck is approximated herein by integrating
the pressure as if it acted on the projetted area (see following sketch)
of the intersection of the shock with the body on the plane normal to
the plane passing through the center lines of the bodies, and then
resolving the force in the Mft direction.

_—_— ..— ————— ——.–—-— .— —-- --–—- ——
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-projected
area

A-A

It is ass~ed that ~ and ; are constant over the shaded surface
area b the preceding sketch and have the values appropriate to the
center line ~tit P hmediately behind the shock. This assumption
impMes that the body radius is relatively small compared with the
separation of the bodies. For a slender body, the projected area is
an ellipse with axes R and ~R. By virtue of the assumption on ;,
the effective pressure acting on the area is constant, having the value
given at the oenter line on the downstream side of the shock and zero
on the upstream side. The value of the pressure on the downstream side
of the sbock is determined in appendix C using the same procedure as
that used in reference lJ for the case of the zero singleof attack.
The pressure coefficient is

where the subscript O refers to the open-~ se body. Since the
ted
the

area on which this pressure
discontinuity in u at the

acts is f3YCRZ,the
shock intersection

buoyant force
with the body

(32)

projec-
due to
is

(33)

——— .— ——___
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Equation (33) together with equation (30) or (31) (which apply beyond
the shaded region in ~he sketch) yields the total.buoyant lift when a
discontinuity in the u-velocity is ~resent.

If the body is a cylinder or a quasi cylinder in the disturbed
region of the pressure field so that eqpation (31b) may be used, the.
expression for the buoyant lift with the lift due to the wave dis-
continuity is given by

2F2
(%) %_+fy ii

B= ~-U qfiz

~here ~ is the pm jetted area on which the shock pressure acts and
WI is the upwash immediately ti”wtream of the wave. But for weak

waves the flow deflection and pressure coefficient are related by

where X is the flow deflection angle through the wave. Hence the
contribution of the wave to the buoyant lift will be zero if

x—=~sin Oo
*2

If the effective projected area is as assmed in
tion (34) is obtained. Thus, for this case, the
is obtained by applying eqyation (31) with WI =

EXAMPLES

(34)

the sketch, the rela-
correct buoyant lift
o.

Lift of Cone-CylinderI@dy

The lift of the cone part of the body as @ven in reference 3 is

where x is the length of the cone. The lift of the cylindrical
aftersection may be obtained from equation (19} with ql equal to the

~tential at the base_of the cone and Q2, the slender-body value
(equation (14) with w . 0). The potential Q1 on the body is

—_____ __ _____ —_ . .
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(36)

‘ $/*+ .s,-,:

Sdstituting equation (14) with ; = O and equation (36) into equa-
tion (19) and combining the result with equation (35] yield the lift
of the cone-cyMnder which, expressed in coefficient form based.on the
area of the cylinder, is

(

cosh-l ~
~.2a 1+

)

${~+p~sh-~~

(37]

In figure 3 the lift of the cone-cylinderand the lift of a cone
are plotted as a function of the parsmeter x/f3R. As would be expected,
the lift of the cone and the cone-cylinderapproach the slender-body
value as the cone angle decreases.

Interference Lift Between ‘J%OCylinders in CoIribination

The lift of two semi-infinite cylinders of the same radius nmunted
in the vertical plane and starting at the ssme streamwise coordinate
is computed to obtain some information concerning the magnitude and
the method of computation of the interference lift between bodies.
There is no loss in generality if the cylinders are assumed to be in
the vertical plane, and the computation is somewhat shorter. Also,
if a symmetricallymounted vertical strut joins the bodies, the strut
csrries no ~ft and produces no significant interference.

The lift of one cylinder in the presence of the upwash field from
the other cylinder is computed from equation (27). In figure 4 the
upwash at various tistances fkom a cylinder in the ve~ical plane as
computed by the method of reference 10 is presented. Near the lip,
values are improved by the method given in appendix C. For a short
cylinder-cylindercombination, the appropriate value of the upwash to
be used at the base would be the value given by figme 4. However, the
upwash approaches the slender-body value rather rapidly downstream df
the lip shock. In this example, therefore, the slender-body upwash

w2=- UaR2/zo2 is used. The lift due to the upwash field in coef-

ficient form and based on the cress-sectionalarea of the cylinder is

—
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% .. 2.%
Zo

17

(38)

where Z. is the distance between the center Mnes of the cylinders.

The interference lift given by equation (38) (which may be regarded
as the first iteration of the total interference lift) can be considered
to result froma certain distribution of doublets along the axis of the
body. This doublet distribution produces an upwash field as though
(in slender-lmlyapp?mxhnation) the up~r body were moving in the nega-

tive z-direction with velocity aU zo2/R2. The upwash inducedat the

lower body due to this motion at a distance Z. below the center Mne

of the upper body is a fraction zo2/R2 of this. Thus the lift of the

lower cylinder in the presence of the upwash from the upper cylinder
due to the presence of the lower cylinder

The complete solution for the lift due to
is then

is givenby

(39)

the upwash for both cylinders

(
R2 # R6 n+l R2n

cL=-~~-~+~- ““””+(-1)
)

—.. . .
2n

‘o
R2

7Z()
= -4a— (40)

1+~

%2

The validity of this equation deteriorates as Z. diminishes because

of the neglect of the gradient in upwash across each body. In the
limiting case when the cylinders are touching (R/zo= 1/2), equa-

tion (40) is certainly invalid quantitatively,but the behavior of the
iteraiiois is
equation (40)

c

.

probably qualitatively correct. For this limiting case
becomes

% (

1

)

4
=-4a-- ~+~-. ..=-– a

4 16 64 5
(41)

. .— .—— ————— .— ..— —. ——
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The magnitude of the terms of higher order than R2/z02 for the contig-

uous case ie 5 percent of We external lift & the cylinder alone. An
exact value for the upwash interference lift at small separation zo, within

the framework of slender-body theory, may be found by considering the
two-dimensional flow around two cylinders. This flow is equivalent to
a doublet external to a cylinder. By use of the method of images
(reference 12}, the ptential in series form (because each reflected
doublet violates the boundary condition]may be oltained and hence
the lift. The result for the interference lift is

+.. .

.

(42)

For the contiguous case the interference lift due to the upwash field.is

=- 4CL(1- #/12)

The magnitude of higher-order terms for this method is about 7 percent
of the external lift of the cylinder alone. The difference between
equations (43) and (41) is due to the fact that in obtaining equa-
tion (40) the boundary condition is only approximatelyaatisfied.

A procedure analogous to that used to obtain equations (40) and
(42) may be applied to obtain expressions for the buoyant lift. The
buoyant lift is equal to the interference lift due to upwash. For this
exsmple, the internal interference ltit ie zero because the noses of
the cylinders are ahead of the disturbance fields.

The total lift of the combination, including the internsl lift

for the isolated cylinders,with terms of higher

neglected, is

order than R2/zo2

(44)

.

.

.
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The interference Mft may be expressed in terms of an interference ratio

% ‘% % ,2—.—
dadcLTG-

i =,
‘% ‘%=-7 (45)

da F

where
%

is the lift of the isolated

It is interesting to note that the
case of the cylinders in the horizontal

~z
i.—

Y02

bodies.

interference lift ratio for the
plane would be

(46)

Interference Lift Between Two Parabolic I!dies in Combination

In this example, the interference lift between two identical
parallel parabolic bodies mounted in the vertical plane and at incidence
angle a with resps?ctto the free-stream is computed.

The upwash distribution about a parabolic body due to angle of
attack may be computed either by slender-body theory, by the stepwise
procedure of reference 3, or by the intermediate procedure of using the
slender-tidy approximation for the g(x) in the integral expression
for the upwash (equation (26)). The equation of a parabolic body in
dimensionless form is

z length of body pinted at both ends

(47)

— ——— — -—— -—.— .———.... ______
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The upwash in the vertical plane through the body center line obtained
by the intennetiate procedure for the prabolic body defined by equa-
tion (47) is

where Z*=
o pzo/z. This

from the pointed nose and

The upwash as computed by

U-J

equation is applicable between the hfachcones

end of the body~ that is,

Z*< X<l+Z*
o 0

slender-body theory

*2*2
-4(1-X)X=

@.2zo*2
for (49)

with the upwash computed
and Zn* = 0.075 and 0.125,

The comparison of equations (48) and (49)
using reference 3 for F* = 7.5 and 12.5
respectively, 3.spresented in figure 5. It is s~en that the upwash
given by equation (48) varies in the same manner with respct to magni-
tude and ~sition as that obtained using the method of reference 3.
Since the computationwith equation (48) is faster, equation (48) is
used herein for the interference lift calculations due to the upwash
from the interfering body. The sign of the interferingupwash acting
at the base of the primary body is im~rtant became it determines
whether or not the incremental lift due to interference upwash is
favorable. The upwash given by slender-body theory will always have
the same sign for a given plane of symmetry, whereas the upwash given by
both of the more exact methods changes sign (see fig. 5). For the
calculation of the buoyant lift, the simpler equation (49) (rather
than equation (48))has been used in equation (30} because, for inte-
grated values, the difference between the various curves is unimportant.

In figure 6 a contour plot of the interference ratio is presented
for the case where the distance between the center lines of the bodies
varies from %* = 0.075 ti z*= 0.150 and one body moves downstream

from #=() h X* = 0.3 with respect to the other parabolic body.
The length of each body is 0.82. The maximum lift curve slope occurs
when the body axes are ftihest a- - me body is at the most
rearward station of the psitions considered.

—
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Interference Lift Between O&n-Nose Eod.yand a

Parabolic Body in Combination

A contour plot of the interference ratio at a Mach number of 2 is
presented in figure 7(a) for an oyen-nose body mounted above or below
and downstream of a parabolic body. The bodies are parallel and at
incidence angle u with respect to the free stream. All pertinent
dimensions are shown in the figure. In figure 7(b) another open-nose
body identical to the first is symmetricallyadded to the configuration
and the interference ratio is presented for this arrangement.

For these plots, the upwash distribution about the parabolic body
was computed from equation (48) with F equal to X5. For the open-nose
body the upwash was determined tisingthe method of reference 10. For
the computation of the buoyant force, equation (31) was used with the
mean radius determined by the amount of
turbed field at a ~icular ,psition.
pnents was obtained using slender-body
l?= o).

Figure 7(a) inticates that for the

volume ;f ~he body in the tis-
The lift of the isolated com-
theory (equation (18) with

psitions considered; the
maximum lift-curve slope occurs when the open-nose body is at the
famost aft and outboard station from the pmabolic body. The same
result is noted in figure 7(b) for the parslmlic body - two open-nose
bmly configuration.

As a matter of general interest, the interference lift at zero
angle of attack is presented in figure 8 for the one open-nose con-
figuration. When the open-nose body is mounted above the parabolic
body, the lift is negative~ and when it is mounted below, the lift has
the same magnitude but the oppsite sign. In the calculation of the
lift the upwash about the ~bolic body was detemnined from reference 8,
and the upwash about the open-nose body was detemnined from reference 10~

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, Deceniber17, 1951

—.——— .- ——___ ...__ ___ -—-.—— .——.-
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APPENDIX A

SYMEOLS

The following symbols are used in this repmt:

cross-sectionalarea of body of revolution, nl?z

maldmum Semispan

buoyant lift $seeond inte~ in equation (5))

lift eoefficient, lift/qA2

fineness ratio of parabolic body of revolution,
length/max3mum thickness

functions of x and r (defined in appendix B)

local strength of source distrilmtion

derivative of local strength of doublet d3&ribution

interference lift ratio

lift due to angle of attack and,upwash
equation (5)]

len@h of body pointed at both ends

Mach number

integer

(first integal in

deviation of local pressure from free-stream pressure

principal part of Ap contributing to lift

free-stream dynamic pressure, $ PIP

radius of body .

maximum radius of body

“tia ‘fi=teJ m

wing area

*“

——.
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u

u,w
.--—

u,v,w

v

2669

integration

free-stream

23

variable

velocity

perturbation velocities in x- and z-directions, respectively

perturbation velocity components due to interfering body

resultant velocity

mmpments of resultant velocity in r-, 9-, and x-directions,
respectively

Cartesian coortiantes

angle of attack

cotangent of I@ch angle of free stream>G

adiabatic eqonent

tangential coordiante, sin-l(z/r}

integration variable (x-coordinateof sources or doublets)

density

total perturbation ~tential for primary body

pmtion of @ contributing a nonzem value of lift

pntion of @ correspmting to zero angle of attack

prtion of @ due to sidewash

Subscripts:

o coordinate measured from axis of body generating disturbance
field

1 start of body

2 base of body

b bodies alone

c bodies in combinaticm

. — ...—
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i due to interference

w

Subscript coordinates indicate prtial differentiationwith respect
to subscriyt variable.

Primes denote ord3nary differentiation.

—
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APPENDIX B

FORM OF VELOCITY ~ liOREODY OF REVOLUTION AND PRINCIPAL

PART OF PRESSURE CO~G TO LIFT

The total perturbation @ential for the primsry body is assumed
to satisfy the governing equation for small-disturbance, isentropic
irrotational flow

p%= - @m - @zz = () (Bl)

The general solution of equation (Bl) as given in reference 13 is

m m

* (X,u,e) = Y eos m 6’Fm(xjr] + Y sin m e ~(x, r)

where

%

The Mnearized boundary condition on the body is

(@r]pR = -(ua+;)sine-%le+u~

25

(B2)

(B3)

.——_ --- ..— —-
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This boundary coiiditionis
Bee-e of the fomn of the
must be given by

.-

NACA TN 2669

co~ct to the onkr u dR/dx or (dR/dX)2.
boundary condition, the tmtal ptential

@=sin0~+co6e Fl+F0

(M)

faQ+*+~

(with ~ = 7(X), ~ = =(X)). The part of the pressure contributing to
the lift will be obtained to the order of accuracy of the linear partial
differential equation and the linearized boundary condition. The
exact form of the pressure inefficient is given by the compressible
BernouJli eqi.mtion

:=+{~++~[l.$)]~-] (E-5,

-fiIu3 eq~tion (m) @cl* the fouo~ apprmdmate ex-pression
for the pressure coefficient:

This equation is correct
velocity at any pint is

where

v.. x

Vg =

Sdmtituthg equation (IS) into (B7b) yields the
=dial Mrection of”the body

(B6)

1- #/&. The net

(B7a)

net velocity in the

.

(m)

— .—__
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- Substituting equations (Ml), (B7a), and (B7c) into the first term in
equation (B6) yields, on the body,

(B9)

The following temm in the appro-te pressure coefficient yield
nonzero values for lift when equation (B4) is sfistituted into (B9),
the indicated
into the lift

differentiation is performed, the result is substituted
integral

X2 2Y’C

Lift =-q
!!

Ap
~sine Rdeax

xl o

and the integration with respect to @ is perfo?med:

~ other temns
of”the pressuw
procedure

(B1O)

(Bll)

intemate to zero. If the next term in the exuansion
coefficient (equation (B6)) is

+=-— + —+
q u U2 U2 -

included, by th= same

~ j3%#
—+— (B12)
u ~’

where the terms of higher order than those appearing in equation (Bll)
have been neglected. It can be shown from slender-body theory that

QJUY ~~ E/., ad Xx/. are of order a dR/dx or (dR/dx)2.

Neglecting temns of higher order than a dR/dx or (dR/dx)2 in
equation (B12), where a and dR/dx are considered to be small and
of the same order, ytelds

Q=-2QX 2ii ‘u 2;—-—=- —-— (B13)
~ Uu Uu

— ——— ——— —.
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The component potentials Y and X thus contribute only higher-
order terms to the lit%. _The surviving component_in equation (B4) is q,
which is due to a and w alone; the sidewash v does not enter.

Oo_son of equations (B12) and (B13) indicates that at high
Mach nw.iberssome of the neglected temns may become as large as those
retained.
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APPENMXc

~ON VELOCITY Components IN VICINITY OF UT

SKOCK FROM AN INCIJ3VEDOPEN-NOSE BODY

The method used herein to estimate the velocity compnents in the
vicinity of the lip shock from an open-nose body at angle of attack is
similar to the technique used in reference 11 for the linearized
treatment of the lip shock from an open-nose body at zero angle of attack.
The boundary ccmdition on the open-nose body in integral form may be
written

= BR. In the vicinity of the lip,
with ~ and thus equation (Cl} reduces

where the lip is 10&ted at x
x- @l is very small compared
to

Uu- _ ‘-pR

J
G’(E)=

B2 o~

(C2)

This is in the form of Abel’s integral equation
g‘(x)j the solution, acmrding to reference 14,

-E

for the unknown function
is

(C3)

when R is,assumed to be approximately constant in the vicinity of the
lip. Introducing equation (C3) into the expression for the upwash
(equation (26)), restricting considerationto the vicinity of lip shock
(x - @ very much less than Br), and integrating yield

‘=- ‘ti2elE+ms2e(2Mw

Ua
(C4)

In the inte~tion of the last tezm in equation (26), the function g(x)
is given by the integral of equation (C.3), which is

g(x)==++cf%
with the constant C equal to zero because g(o) 9 0.

(C5)

.

—-— .-— .—— . . -. —— b — ———
.:
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The u-velocity ccmqyment in the vicinity of the shock is obtained
by inserting equation (C3) into the integral expression for the u-
velocity @ neglect~ x - f3r compared with @

2U AP 2a-— =— =-—
Uq P

At the lip shock the upwash is zero

(sine:

when calcuht ed

as before. The result is

(C6)

by the method of
reference 10. In figure 3 the upwash given by equati& (C4) is joined
by a &shed line to the values @ven by the method of reference 10
downstream of the lip shock. The slope of the &she’d line is about the
same as that given by reference 10, thus indicating the va~dity of the
method of this appendix.
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